2 Basic Seismological Theory

* Waves on a string

e Stress and strain

e Seismic waves

e Snell's law

* Plane wave reflection and transmission coefficients
e Surface waves

» Dispersion

« Normal modes of the earth
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Tension (T) _—

— —

X

The displacement u(x,t) as a function of both position along the string and of time




Figure 2.2-1: Tenslons on a string segment.
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Wave equation:
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Figure 2.2-2: Propagating pulse, fix - 2t).
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The solution has the form u(x, ) = f(x £ vi):

Pu(x, 1)
dx?

Pu(x, 1)

=f(xxvt) and ¥

=v2f (x £ vi)

where /” is the second derivative of f




Figure 2.2-3: Displacoment fleld of u = A cos (mt - 2nx).

Harmonic (sinusoidal) function:

u(x, 1)y = 4" 5 = 4 cos(wt + kx) + Aisin(wt + kx)
ot=kx - v =x/t = w/k

gives v = aw/k

Complex numbers

A complex number can be written in polar coordinate form as

§ . 1: Ry
z=a+ib=re" = r(cosé +isind). Fyure A2 ofa
r=vVal+ b  #=tan"'(bla).

5
a=rcos b=rsing. ]
g
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E
The conjugate of a compl, -
a
2 =a—ib=rcos@ - irsind = rcos(-8) + ir sin(-8) = re ", =
|zF=z2"=(a+ib) (a=ib)=(a’ + b
zf=zz =(a+i a = ib)={a ) Real part

= re? rei® = 2,

e’ =cos@+ising and e =cosg-ising

cos@=(e" +e) /2 and sing=(e” - )/ 2i.




Figure 2.2-4: Harmonic wave, U = A cos (wt - kx).

Period
Table 2.2-1 Relationships Between Wave Variables g -
QUANTITY UNITS \ /-\ /\
Velocity distance/time  v=aw/k= fi= AT \/ \-/ t
Period time T=2rlw=1/f=A4lv i R PR i
Angular Frequency time ™! w=2xiT=2xf=kv
Wavelength

Frequency time~ S =al2r)= 1T =v/d = o
Wavelength distance A=2alk=vlf=vT ’\ /\ /

=¥

Wavenumber distance™ k=2xld=wv=2xflv \/ \/

Figure 2.2-5: Transmitted and reflected wave pulses.

Incident

Transmitted
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zq{x, !}: Aea‘{mr—k,.r}+Bea‘(mr+k|.r} G
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Right side:

up(x, 1) = Cel@! = k2v) Positive x only
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Boundary conditions

» Continuity in displacement
—u1(0,t) = u2(0,t)

« Continuity in tension
— 1SiN6: = 1SiN6:

Left side:

u(x, )= Ae'@1 = k1%) 4 poior +kix)

Right side:

uy(x, t) = Ce'@ —k2v)

uy(0, 1) = uy(0, 1)
Ae."wi 3 Beiwr _ Ce:'w.f

A+B=C




Left side:

H|(I, f): Ae{(mr—k].\'] + Be:((ur+k|_t)

Right side:

Hz(x, f) — Cef((ulf = kax)

duy(0,1)  0uy(0, 1)
4 dx ¢ dx

k(A - B) =1k, C

Because the velocities on the two sides are v; = (7/p;)"? and k; = w/v;,

pivi (A= B) = pv,C

A+B=C

PV (A= B) = pv,C

Reflection coefficient:

Ryp,=—
2=~

B=P|V|—

PV + PV

P2Va o
pv=‘acoustic impedance’

Transmission coefficient:

C 2 pyvy
2=—=————

A4 pivi+ pavy
Ry =— Ry, T+ Ty =2




Ry = B PV — PaVa
2= 7= 0
A pyvi+ pava
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Figure 2.2-T: Refl d and itted litud,

x=0

0 =Vvik; =k, =v2n/A, =Vv,27/ 2

2.4.4 Energy in a harmonic wave

T can be larger than 1, Is energy conserved?

Kinetic energy:

L
KE = 2[&]{!\

because the mass of the spring is m = pdx

Averaged over one wavelength, with u(x, 1) = A cos{wr — kx):

u Y Lo [,
K.’:‘:% [a—’:]<.{r=“’ u“’ Jsin‘{wr—h}c.’x
(1] 0

Identity:

sin®(@t — kx)dy = /2

KE = A2’ pl4




Potential energy:

strain:  “The ratio of the change in the length to the original length”

(dx® + du*)'"? — dx [d!f ]3 i 1 [au ]2
I il b Y PN (L Y R
dx dx 2\ dx

(using the Taylor series approximation (1 + a*)'? = 1 + ¢*/2 for small a)

T - Y

PE = j etdx = J(ﬁ]d

0 0

r (oY rAzkEA_z
PE = 22 J. (a] dx = %) j sin“ (@t — kx)dx

0 0
2
wp

PE = 1 A*k%14 = 420 pl4 Vi=t/p, 7= 2
KE = A0’ pl4
PE = A20* pl4

Total energy:

E = PE + KE = A0’ p/2

Energy flux:

E= A0’ pv/2

Ep + Er = RL,0% p V12 + THo' pyvs/2

= (@°12) [R},v1p1 + Thvaps) =0’ pyvi/2 = E,




Standing waves on a String

node

¢

(]
(]
(]

o

The string has a set of natural patterns of vibration called NOrmal modes

2.2.5 Normal Modes of a string

P u(x, 1) _ 1 du(x, 1)

ax2 w2 o2

Propagating wave solution:

u(x, t) = Acos(wt £ kx)

Mode solution:

u(x, t) =U(x, @) cos(wt)

*U(x, w) B —w*

9x2 v V@)

One solution of this equation is

U(x, @) = sin(wx/v)

10



U(x, o) = sin(wx/v)

For fixedendsat x =0 and x = L:

U0, w) = U(L, @) =0

Atx=L:

U(L, ) =sm(wL/v)=0

which occurs for angular frequencies w,, such that
w,LIvN=nr or ,=nxv/L.

(Eigenfrequencies)

Eigenfrequencies:

w,Liv=nr or w,=nrv/L

w(x, t)=Ulx, w) cos(at)

u(x, 1)=U,(x, ®,) cos(w,1)

where
U,(x, w,) =sin(ew,x/v) = sin(nxx/L)

is known as the spatial eigenfunction.

Because @ = vk = v2r/4, the eigenfrequencies correspond to
@, =naviL =2aviA  or L=ni/2 L -> infinite, Wh+1 - Wnh->0

Each spatial eigenfunction has an integral number of half wavelengths
along the string’s length L, so the displacement at both ends is zero.

The solutions are standing waves, known as the normal modes or free oscillations.
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Travelling wave:

u(x, )= D, AU,(x, 0,) cos(a,t)
n=10{

The modes are orthogonal:

J-Lsin M in| N2 dX=£5mn
L 2

Source Location
A, = sin(ﬁzxé.fL)F(m,,)

Time history of the source

u(x, )= 3, sin(nzx,/L) F(w,) sin(nzx/L) cos(@,t)
n =0

Figure 2.2-8: Waves on a string as a summation of modes.

ol

u(x, )= Y, sin(nxx,/L) F(o,) sin(nrx/L) cos(w,1) RASRASES

n=0

The source, at x;

F(@,) = exp[~(0,7)*/4]

with 7 =0.2.

20k

= 8, is described by

Mode number

L=20,v=3,L0=8 ANNADNANNNSNNANNNNNN,

Wn = nnv/L

40 =

o 5 10 15 20
Distance
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Figure 2.2-6: Waves on a string of two different densities.
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Review

Solution of wave equation in 1D
— Propagating wave solution
— Normal mode (free oscillation solution)

« Solution can be represented as weighted sum of modes

(standing waves)
 Eigenfrequency is depending on structure.

 Excitation coefficient is depending on the source.

Definitions of wavelength, period, ...

Reflection and transmission coefficient

Energy conservation at boundary.
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2.3 Stress and strain

Preparing for seismic waves in 3D:

Stress tensor

Strain tensor
Equations of motion
Constitutive equations

Continuum Mechanics:
Force --> per unit volume
Mass --> per unit volume

F =ma

As vector:

?u(x, 7)

fx,t)=p 3

As components:

u;(x, t )
f;{x’ '9) =p a(tz ) = PU;

14



Figure 2.3-1: Surface force on a volume element.

2.3.2 Stress

Stress is a measure of force per unit area
in a body

Two classes of forces:

Body forces (e.g., gravity)

Surface forces (e.g., pressure underwater, stresses)
0= o

The traction vector has the same orientation as the force, and is
a function of the unit normal vector n

Figure 2.3-2: Traction vectors on the faces of a volume element.

X3

Xy TH] -

TV is the traction vector acting on the surface whose outward normal is in the positive &; direction.

The components of the three traction vectors are T,! " where the upper index ( f) indicates the surface
and the lower () index indicates the component.

Example, ‘."_';" is the x; component of the traction on the surface whose normal is &,.

Surface

Stress tensor, o /
oy on oy (T) (MY " R G- -
oy=|on on o= .lq:n - Tilll Tih TE\" I
-[-q_h ?.{ISI I.;.I; T_i‘l

The tensor’s rows are the three traction vectors. Component

o3 O3 Oy

The stress is the force per unit area that the material on the outside of the surface (the side to which n
points) exerts on the material inside.

15



Figure 2.3-3: Stress components on the faces of a tetrahedron.

44

The stress tensor gives the traction vector T acting on any surface within the medium.

Example/ The traction on an arbitrary element of surface ¢S, whose normal i is not along a coordinate axis,
is found by multiplying each component of the traction by the area of the face it acts on and summing over
the faces.

3

T; =00 + o3iny + 0305 = Z Tjin;=0un;
j=1 '

Figure 2,3-4; Stress components on the faces of a volume element.

: o
v
<-A---170 > o
Xz G E | T3
- T —
T 50
X b 1____1‘,"0‘
o e
Normal stresses: &, 07;, 033 ‘

Shear stresses: 0124 O3, T2, O23, 031, O32

Normal stresses are positive outward, and expand the volume.
---> Tension

Normal stresses are negative inward, and contract the volume.
---= Compression
(Holds true for Earth’s interior)
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The stress tensor is symmetric:

Otherwise: torques --> rotations!
Allows us to define tractions as

T; = Z Ojih; = oyn;
i=1

(as components)

Oy —

T=on

(as vectors)

Stress = force/area
Incgs: 1 bar=10° (.1yn.-"cm2
1 atm = 1.01 bars

InSI: 1 Pascal (Pa)= 1 N/m® = 10~ bars

Figure 2.3-5: Torques on a rectangle.

Oz

X3

F =0,,dx,dx, > 7 = g,,dx,dx, xdx,
o

T,
Oy + ——adXx
A

a0y
1’,] + ((_)de,
e, e
h &+ ac"o‘x
1 % 1
¥,
- X
l O
Gy

F =o,,dx,dx, = 7 = g,,dx,dx, x dx,

2.3.3 Stress as a tensor

What makes a vector a vector?

- It remains the same in different coordinate systems.
- Its components in different coordinate systems are
related by a transformation matrix A.

Similarly, o is a fensor (and not just a matrix)
because it transforms between coordinates according to:

o =AcA”

17



2.3.3 Stress as a tensor

T'=AT, n'=An
n=A"M"=A"M'
Tv: G'ﬁ'

T'= AT = Aofi = AGA'A

o'= AcA’

Example: A block of material with faces perpendicular
to the x; and i ject only to normal stresses o and &, so the stress tensor is diagonal:

& 00
6=[0 a; []]

o 0 0

Now consider a different block in the SAME PHYSICAL SITUATION, but with rotated sides:

o =dogd”

~sin@ cos# 0|0 o O|]sing cosd 0|=|(o2-0))sindcosd o sin’ 0+ 0y cos’ 8
0 0 TAG 0 0 0 ] 1 ] 0

[cusb‘ sin @ ﬂIa-_ 0 {JIcmaH —siné :}] J.cus%%rr;sin’ﬁ' (@2 — o) sin@ cos &

For example, if &, = 1, o, == 1, and & = 457,

Figure 2.3-6: stress in

0 -1 0
o= [—1 00 ]
0 0 0

First block: only normal stresses.
Second block: only shear stresses. X

Same state of stress!!
(but different coordinate axes!)

T2

Faz

18



2.3.4 Principal stresses

For any state of stress, a set of coordinate axes can be found that provides only normal stresses (and no
shear stresses!).

These axes are called the principal stress axes and the normal stresses on these surfaces are called princi-

pal stresses.
To find the principal stresses, we use the concepts of eigenvalues and eigenvectors.

The shear components of the traction will be zero if the traction and normal vectors are parallel, such that
they differ only by a multiplicative constant, A,

Ti=oyn;=Ain;
The principal stress axes i are the eigenvectors of the stress tensor.

The principal stresses A associated with each one are the eigenvalues.

Appendix Al

Eigenvalues and eigenvectors:

The product of an arbitrary n x n matrix 4 and an
arbitrary n component vector x

y = Ax

is also a vector in n dimensions. This is not the same as coordinate transformation;
the vector x is transformed into another distinct vector, with
both vectors expressed in the same coordinate system.

A physically important class of such transformations are ones in which
a vector is converted into one parallel to the original vector, so that

Ax = Ax

where 4 is a matrix and A is a scalar. The only effect of the
transformation is that the length of x changes by a factor of 4.
For a given 4, it is useful to know which vectors x and scalars 4 satisfy this equation.

19



(A-Ahx=0

Appendix A2
ap = A dys a3 X 0
ay; ap-4  dan x3|=10
ay ay ay; — AJ\x; 0

This is a homogeneous system of linear equations, so nontrivial solutions exist
only if the matrix (4 — A[) is singular.
Seek values of A such that the determinant

ap -4 ap ap
| (4 =A@)|=det| a3 an-4 an [=0
as ayp  ayp -4

Evaluating the determinant gives the characteristic polynomial
BN Li-1=0,
which depends on three constants called the invariants of A:
Iy=a), +an+ay
I, = det [“u 01z]+ det [“22 ﬂ:_\]+ det [“n “I.\]

ay dx a3y di3 az diz

Iy =det A.

3 2
A=A+ LA-1;=0
The roots 4 are the eigenvalues or principal stresses, a,,.
In geology, where all stresses are compressive (negative), | oy | 2] oy | 2] o5 |

The eigenvalues gives the associated eigenvectors A", which are the three mutually perpendicular surfaces
on which there are no tangential tractions.

I"IH ﬂ[1IJ !‘.'E,” ,,3“
A= ﬁl!} — ﬂ[12] ”{22> "132r
ﬁm ﬂ[13] ”tzh ”13_1»
[eJ] 0 0
A=|0 o 0
0 0 (25
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2.3.5 Maximum shear stress and faulting

Faulting will occur on the plane on which shear stress is highest (?)

Figure 2.3-T: Traction vector acting on a surface element.

The plane of maximum shear stress is located 45° from the maximum and minimum normal stress axes,
and the value of the maximum shear stress is

T =(0y—03)2

If the maximum and minimum principle stress axes are (1, 0, 0) and (0, 0, 1), the planes of maximum shear
stress are

= [1.-'\f2. 0, 1-'\"2} and n= (—1.-'\1'2. 0, 1.-'\"2]
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Because of the cohesive strength of rocks,

fracture often occurs at about 25° from the
maximum principle stress direction instead
of 45°,

Figure 2.3-B: Compression of a rock sample.

a0

‘\ Rock ’/

Fracture occurs

Figure 2.3-9: Stress fields associated with three types of faulting.

(a) 0y = 0

Normal
faulting

Fault planes

(c) Side view
O33=0;

(b) 033 = O

Reverse

or thrust

~ faulting
s .

’ N

s .
s b

~
Fault planes

Map view
Oy

Fault
planes

Strike-slip faulting
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2.3.6 Deviatoric Stresses
Mean stress:
M = (O']] + (o)) + 0'33)!’3 = ()'5,-:‘{3

M = (o, + 05 + 53)/3

Deviatoric stress tensor:

D =O',J, = M&;

q
oy - M o112 013
D= (o3 Oy — M 0723
031 O3 o33 — M

For lithostatic conditions, D = 0.

2.3.7 Equation of motion

Figure 2.3-10: Stress components contributing to force in the x, direction.

.
aw /. | S
‘/ iy
P -
. —_—
=10 — !
]
] '
: I
o o T
- = I
x i — - E
oy =, - - e T,
- -

Write F = ma in terms of body and surface forces for each component.

For example, for the x; direction, the terms involving the &, and —€, faces (where the area of the faces are
dvdxy,) are

aau[”tiﬁ — oyy(X) | dx ey = do(x)
dx; ol i dxs

[cr_g;(x + dv,€;) — 0;3[x1:| dxydxy =[cr_»;(.tj + dydxgdy;

(Similar for the force in the x; direction due to the pairs of faces with normals £&; and +é;.)

Summing the three terms, adding the body force component, and equating this net force to the density times
this component of the acceleration yields

&1y
<l dyydvydey

ar?

doy  doy  doy
adF R ﬂ"‘J dyydxsdvy + f3 dyydiade; = p

ET PR P
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0 d do 92
l afilz + a(}\:zz: + 80\-:;2] dxdxydxsy + [ deydxadxy = p % dxdxydxy
X1 B X:

3

80'13 - 80'32 " 80'32 - ,{2 _ Z 30'_;-2 ) 821,‘2

axl aX2 8.\’3 i=1 axj t "{2 =p aFZ

Similar equations apply for the x, and x; components of the force and acceleration:

doji(x, 1) _ Qu(x, 1)
T + J(J'(x! {) =p T
do;(x, 1) Pui(x, 1)

+ filx, t)=p

ax;— or?

oy (X, 1) + fi(x, 1) = pii;(x, t)

This is the Equation of motion, which applies everywhere in a continuous medium.

30',}-():, .l') _
T + ﬁ(x\ ") =p

J

2u;(x, 1)

dar?

Equation of equilibrium:
(accelerations are zero, like a static problem such as stresses resulting only from gravity)

0j,;(X, 1) == filx, 1)
Homogeneous equation of motion:

(with no forces, such as the harmonic oscillation of wave propagation)

P u(x, t
9j;,(%, ;):p%
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2.3.8 Strain

Figure 2.3-11: Change in relative displacement during deformation.

UNDEFORMED

DEFORMED

The strain tensor describes the deformation resulting from the differential motion within a body.

duy(x) | "
(X + 8x) = w(x) + —— dx; = w(x) + du;
dx;
dui(x)
Su; = Ix ax;

)
Although we are interested in deformation that distorts the body, there can also be a rigid body translation

or a rigid body rotation, neither of which produces deformation. To distinguish these effects, we add and
subtract du ;/dx; and then separate it into two parts

PO TN MY TRE-7 ) N
“=3\ax, T P 2y, "o P T 0N

@y corresponds to a rigid body rotation without deformation. It is antisymmetric (@; = — @), so the diag-
onal terms are zero.

Strain tensor:

duy 1 duy . dus y 1wy . dus

dx; 21dx,  dxp) 2\ldxy  dxy

| 1 ou . o, dus 1 (us . dus

“=]7 dx,  dx, dxs 2\dx;  dx,
I(duy oduyy 1(ous us iy
| =4+ == — + —
20dx;  dxs ) 2\dx;  dx; dx;
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Figure 2.3-12: Some possible strains for a two-dimensional element.

duy duy " iy a
a8 —=0,u,=0 B —c y (€) |, —
ETd e TR T T
x * 2
. — e —
- e - -
- e ] -
. - . L
- . —— .
- — - e
— — e .
- — S— -
x *, "
oy du duy duy
) — =0 —=0 ®) —<0, —=0
ax o A ax; %

Figure 2.3-13: Change in volume due to principle strains.

ey

The trace or sum of diagonal terms of the strain tensor is the Dilatation:
(gives the change in volume per unit volume associated with deformation)

duy  duy  duy

L TR PR P

g=e¢ V-u

For initial volume dx, dx;dx; the volume after deformation is

20 026 a0 28 = 260 20, 20, »
[1+a.\'| X} I+a.r3 x5 Hax; {3 '+ax. +B.t3 +B_t_1 fvydysdxs = (1 + @)y dysdys

If the initial volume is V' = dx dx,dx;, the final volume is I + AV = (1 + &)V,
so@=AVIV
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2.3.9 Constitutive equations

Constitutive equations give the relation between stress and strain.

The simplest type of materials are linearly elastic, such that there is a linear relation between the stress and
strain tensors.

Others could describe viscous (Newtonian and non-Newtonian), viscoelastic, elastic-plastic, etc.
Linearly elastic constitutive equations gives rise to seismic waves.
Infinitesimal strain theory assumes very small displacements.

Example: a typical body wave can have displacements of 10 microns and wavelengths of 10 km, The
resulting strain is about (107°m/10* m) = 107",

However, for strains greater than about 107, the linear relation between stress and strain fails.

Linearly elastic material: The constitutive equation is Hooke s law:
Tij = Cijur€i
The constants ¢y, the elastic moduli, describe the properties of the material.

Because the subscripts each range from 1 to 3, ¢ has 3%, or 81 components.

The stress and strain tensors are symmetric
Ciiki = C jikl Cijkl = Cijtk

(brings the number of independent components to 36)

A further symmetry relation based on the idea of strain energy gives:
Cijkt = Chlij
(...downto 21)

21 independent components are needed to describe general anisotropy.
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+ + +
+ 4 +
+ 4+ +

Isotropic/Homogeneous

+ + <
+ 4+ +
i ne

Isotropic/Inhomogeneous

“+ 4
4+
4+

-+
-
—+

+4 4

4
4_1_.

Anisotropic/Homogeneous

Anisotropic/Inhomogeneous

Isotropy: Material behaves the same way regardless of orientation.

This reduces the number of independent ¢, to 2!!!!

One useful pair are the Lame " constants A and u:

Cijkt = A0y0p + 1 (O by + 63d )

O'U — Aﬂekk(sr_'f + 2’){"6{}' = ,1()5” + 2){:‘6’!.;.

Example:

g = A6 +2‘L"£’.‘H and g = 2){!€|2.

Problem: A has no physical meaning
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More useful: g and K

The incompressibility or bulk modulus, K is defined by subjecting a body to a lithostatic pressure dp, such
that

doy; = —dpdy

The resulting strains are —dpd,; = 1d@3; + 2ude;;

Seti = jand sum (&; = 3): =3dp = 3Ad8 + 2ud#d because §; = 3.

K is defined as the ratio of the pressure applied to the fractional volume change that results:

—dp 2
K=—t=a+=
de +3,u

The constitutive equation in terms of K and pu:
o = K0d; + 2u (e; — 65,/3)

Two parts: a volume change and a change in shape.

Two other elastic constants are defined by pulling the material along only one axis, leading to a state of
stress called uniaxial tension. 1f the tension is applied along the x, axis:

oy =(4A+2u)ey + dexp + Aes;

gy =0= 24 + (4 +2u)er + des;

o33 =0=4e); + ey + (A +2u)es;

Subtracting the last two equations shows that e;5 = €53, s0

-4
L —
204+ p)

€ =¢€3n= 1n=-vey

This defines Poisson’s ratio, v, which gives the ratio of the contraction along the other two axes to the
extension along the axis where tension was applied.

Substituting this into the equation for o, ;:

oy _ HGA+2u) E
ey A+

E is called Young s modulus, the ratio of the tensional stress to the resulting extensional strain.
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Relations between moduli

A A E 3K-2u 3K-FE

=2a+un) (GK-2) 2z 2G3K+p 6K

uGa+2u) A1 +v)1-2v) 9K(K - 4) 9K i
E= = = =2u(1+v) = =3K(1-2
A+ u v 3JK-4 Al +v) 3K+ u ( V)
K=2+Ep=ﬂ(l+v)=2p{]+v}= uE _ E
3 v 3(1-2v) 3Gu-E) 3(1-2v)
L 2wv _wE-2w) _ . 2 Ev____3Kv_3KGK-E)
“1-2v " 3u-E T 3MTUwwi-2v) 1+v  9K-E
A1-2v) 3 E  3K(1-2v) 3KE
=" 2 K== T 2%y C9K-E

Boundary Conditions:

At the free surface, stresses go to zero:
Ti=o;n;=0

If the surface is horizontal,
o3=0opn=0;=0

The components of the stress tensor that do not affect the tractions, in this case o), o)1, and &3, are
unconstrained.

Similarly, no restriction is placed on the displacements.

A free surface corresponds in the one-dimensional case to a string whose end is free to move.
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Figure 2.3-14: G pill box a ¥

Interface Boundary Conditions
solid-solid | T =77
ui =u;
solid-liquid | 75 =T3
T2 . T] =0
+ _ —_—
Uz = Uy
free surface | 7, =0

Strain energy:
Energy in a compressed spring:
W I e = + ho?
= X = — KX
2
0

By analogy, the strain energy stored in a volume is the integral of the product of stress and strain compo-

1 1
nents summed: W = 3 oyeydV = 2 J- CipegeydV

The strain energy is symmetric in ij and &/, providing the symmetry that ¢, = ¢y -
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